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Abstract 

Solution derived La2Zr2O7 films have drawn much attention for potential applications as 

thermal barriers or low-cost buffer layers for coated conductor technology. Annealing and 

coating parameters strongly affect the microstructure of La2Zr2O7, but different film 

processing methods can yield similar microstructural features such as nanovoids and 

nanometer-sized La2Zr2O7 grains. Nanoporosity is a typical feature found in such films and 

the implications for the functionality of the films is investigated by a combination of scanning 

transmission electron microscopy, electron energy-loss spectroscopy and quantitative 

electron tomography. Chemical solution based La2Zr2O7 films deposited on flexible Ni-

5at.%W substrates with a {100}<001> biaxial texture were prepared for an in-depth 

characterization. A sponge-like structure composed of nanometer sized voids is revealed by 

high-angle annular dark-field scanning transmission electron microscopy in combination with 

electron tomography. A three-dimensional quantification of nanovoids in the La2Zr2O7 film is 

obtained on a local scale. Mostly non-interconnected highly facetted nanovoids compromise 

more than one-fifth of the investigated sample volume. The diffusion barrier efficiency of a 

170 nm thick La2Zr2O7 film is investigated by STEM-EELS yielding a 1.8 ± 0.2 nm oxide 

layer beyond which no significant nickel diffusion can be detected and intermixing is 

observed. This is of particular significance for the functionality of YBa2Cu3O7-δ coated 

conductor architectures based on solution derived La2Zr2O7 films as diffusion barriers.  
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Introduction 

Understanding the growth mechanisms and texturing of thin film coatings is of crucial 

importance for the fabrication of a variety of functional materials where thermal barrier 

coating, thermal resistance, coating toughness, diffusion barrier quality, crystallographic 

texture and electrical transport properties play an essential role. Oxide thin film coatings are 

interesting because of their numerous applications as catalysts, radiation resistant layers, 

electrolyte materials in solid oxide fuel cells, dielectric mediums for capacitors and as buffer 

layers for coated conductor architectures.[1] Chemical solution deposition[2] and sol-gel based 

processing[1] have emerged as promising routes for the fabrication of YBa2Cu3O7-δ (YBCO) 

coated conductors.[2] These consist of a highly biaxially textured substrate upon which a 

buffer and superconducting layers can be deposited by a variety of film deposition 

techniques. 

Coated conductors are of great interest for diverse applications in the energy and 

magnet technology; such as power cables, transformers and current limiters. [1] La2Zr2O7 

(LZO) thin films are currently of great interest for the fabrication of low-cost buffer layers 

because of their scalability, compatibility with the high critical current of YBCO, the small 

lattice mismatch of the a or b axis with that of YBCO (~0.5% and 1.8%, respectively), the 

relatively low formation temperature of ~900°C, the high stability of up to 1500 °C and the 

capability to grow biaxially textured on flexible nickel tungsten substrates[3], acting both as a 

Ni diffusion barrier layer and as a seeding for the upper layers. The buffer layers play an 

important role for coated conductor technology since they transfer the texture from the highly 

biaxially textured nickel tungsten substrate up to the YBCO superconducting layer.[4]  

The microstructure of LZO thin films shows exciting properties, the layers are highly 

biaxially textured, but are nevertheless non-coherent[4]. Annealing and coating parameters 

strongly affect the microstructure, but different processing methods yield similar 
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nanostructures. Nanoporosity with nanovoids of 10-20 nm in size and LZO grains (100-200 

nm) are typical features found in such films [5]. Several film deposition techniques can be 

used for obtaining similar solution derived pyrochlore films.[1,6,7,8,9,10] Substrates can be 

flexible nickel tungsten or LaAlO3 (LAO) single crystal substrates, but similar features have 

been observed and have been reported in the literature. [7] To avoid significant oxidation of 

the underlying substrate these oxide thin films are treated in a reducing gas (Ar-5%H2). Such 

a deposition process yields a porous microstructure, so that chemically prepared LZO thin 

films can be considered as porous materials. Nanovoids are formed due to the combustion of 

organic material at the decomposition and this pyrolysis retains carbon in the material and 

seems to be unavoidable under the standard preparation conditions.[7],[4],[11]  

The goal of the present investigation was to (i) demonstrate the efficiency of LZO 

buffer layers as diffusion barriers for Ni on the nanoscale in spite of the presence of 

nanoporosity and (ii) to perform a three dimensional nanoscale characterization by 

quantitative electron tomography. Reliable measurements of the diffusion barrier efficiency 

of chemically deposited LZO buffer layers and of the LZO nanoporosity were unavailable up 

till now. This is of great relevance for the quality control and functionality of chemically 

deposited buffer layers for coated conductor technology.[12] High-angle annular dark-field 

scanning transmission electron microscopy (HAADF-STEM) combined with electron energy-

loss spectroscopy (EELS) has been performed to investigate the efficiency of the LZO buffer 

layer as a diffusion barrier at the nanoscale. Combining HAADF-STEM with electron 

tomography, the 3D morphology of the LZO thin film has been investigated. Using the 

reconstruction algorithm technique 'Discrete Algebraic Reconstruction Algorithm' 

(DART)[13],[14], the nanoporosity of the LZO buffer layer could be determined quantitatively.  

 

Experimental 
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 A biaxially-textured Ni-5at%W tape was dip coated using a (0.15 M) LZO solution, 

pyrolyzed and annealed at a temperature of 900°C. The pyrolysis was performed at 600°C 

with a heating rate of 10 K/min and under air. After pyrolysis the sample was brought to 

room temperature and annealed with a heating rate of 10 K/min. Annealing time was 60 min 

and cooling was done at 2-3 K/min. Details on sample preparation procedures are found in 

[31]. The LZO film thickness was 170 nm.  

 Samples for TEM investigations were prepared by conventional mechanical polishing 

and grinding followed by ion milling using a Res 100 Baltec ion milling machine operating at 

4.5 kV and 3.5 mA for several hours. Plan-view samples were ion milled from the substrate 

side only at an angle of 12°. Cross-sectional samples were prepared by a grinding and 

polishing process and then ion milled from one side only at an angle of 12°. The final 

polishing stage was done at 6°. A micro-pillar was prepared for electron tomography using a 

a FEI Nova Nanolab 200 DualBeam SEM/FIB system, this allowed for a full tilt range 

avoiding missing wedge artefacts. [25] 

HAADF-STEM and STEM-EELS was performed using a JEOL 3000 F microscope 

equipped with a Gatan GIF2000 1K spectrometer system operating at 300 kV with an energy 

dispersion of 0.5 eV/channel and an approximate energy resolution of 1.5 eV. Electron energy 

loss spectroscopy (EELS) scans in STEM mode were performed across the layer interface 

with a collection angle of 28.6 mrad and a convergence angle of 10.4 mrad. EELS spectra 

were analysed using Digital Micrograph and EELSMODEL software.[16] The sample was 

tilted into the [001] zone-axis of Ni to keep the interface parallel to the electron beam for the 

STEM-EELS measurements. Spatial drift correction is also applied.  

 For electron tomography the micro-pillar was mounted on a dedicated Fischione 2050 

on-axis rotation tomography holder allowing 360°  image acquisition. A series of 2D 

HAADF-STEM micrographs is recorded over a tilt range of 180° with 2° tilt increments 
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using a JEOL 3000 F TEM operating at 300 kV. After alignment of the micrographs using a 

cross-correlation algorithm the 3D volume was reconstructed using SIRT [26] and DART 

[13],[14] algorithms. Visualization was done with Amira software. To gain 3D information 

on the density of the voids an additional segmentation step has to be taken. 

 

Results and discussion 

LZO films were prepared by chemical solution deposition on Ni-5at.%W substrates with an 

annealing temperature of 900°C. Sample preparation details are found in reference.[4] Due to 

the anisotropic surface energy of LZO, the preferred planes for nanovoids are the hexagonally 

close packed {111} surfaces in fcc, yielding octahedral structures clearly seen as rectangles 

in the plan-view image of figure 1(a) and in the TEM cross-section image shown in figure 

1(b). This preferential orientation for pyrochlore LZO structures has been previously 

reported. [4],[15] Figure 1(a) is a HAADF-STEM image of the chemical solution derived LZO 

thin film in plan-view. The contrast in HAADF-STEM images is proportional to the atomic 

number (Z) and the thickness of the sample; therefore it is also known as Z-contrast imaging. 

Thus, the square-shaped dark areas, 5-20 nm in size, are nanovoids and the bright background 

is LZO. A preferential direction is observed and the edges of the rectangles are parallel to 

[100] and [010] as shown schematically in figure 1(c). The projection of the octahedrons is 

observed in plan-view. Figure 1(b) is the corresponding cross-sectional TEM bright-field 

image. Note the preferred nanovoid facet orientation of 45° with respect to the substrate 

interface. The octahedron is shown schematically in figure 1(d). Figure 2 is a high resolution 

TEM image of a region shown in figure 1(b). 

By combining STEM with EELS, local chemical composition from a specific sample 

area can be obtained with a high spatial resolution. A series of 2D EEL spectra (10 × 40) 

were acquired across the LZO-Nickel tungsten interface area marked by the box in figure 3. 

Pixel size along the y direction is 0.2 nm and along the x direction 5 nm. Figure 4 shows the 
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typical O-K (532 eV), La-M4,5 (832 eV and 849 eV) and Ni-L2,3 (855 eV and 872 eV) edges 

obtained across the La2Zr2O7/Ni-5at.%W interface. The 3D EELS data were analyzed by 

Digital Micrograph (DM) and EELSMODEL.[16] Because the La-M4 edge (849 eV) overlaps 

with the Ni-L3 (855 eV) edge, only the La-M5 edge was taken into account to quantify the La 

concentration by DM. To overcome the overlap problem for Ni, an attempt was made to 

separate only the Ni-L2 edge making use of EELSMODEL. To calculate the Ni 

concentration, EELSMODEL was applied to extract ony the Ni-L2 edge while the 

background was estimated from the flat region between the Ni-L3 and the Ni-L2 edge for the 

intensity and the tail of the Ni-L2 edge for the slope. The derived La, Ni, O elemental maps 

are given in figure 5(a-c). All of the maps show that the concentration changes gradually at 

the interface between LZO and the Ni substrate over a limited distance. Figure 5 (d) is the 

corresponding R(La-M5)G(Ni-L2)B(O-K) image, an oxide layer as small as 1.8 ± 0.2 nm 

could be determined. Shown in figure 6 are the profiles of the O, La and Ni elemental map 

together with the relative intensity ratios of La/O, Ni/O. They show a step at the interface 

which implies that an intermediate layer is formed in between. Intermixing occurs and La is 

present in this regime. The presence of W, as low as 5% in the nickel substrate, cannot be 

measured here. Its M4,5 ionization edges (at 1872 eV and 1810 eV respectively) are beyond 

the energy-loss range for a spectrum with reasonable signal to noise ratio (SNR). However, 

from HAADF-STEM images the interface appears as a dark layer, which suggests a relative 

lack of heavy atoms such as tungsten at the interface. Figures 7 shows the changes of the Ni-

L2 edge across the interface, a 1.3 eV energy shift of the Ni-L2 ionization edge was observed. 

This chemical shift implies that the nickel is oxidized to a higher valence in the interface 

layer.[17] The ionization edge shift can be calibrated from reference materials and is 

approximately 1 eV/valence for the Ni-L2 and L3 edge.[18] The 1.3 eV Ni-L2 shift implies 

therefore a valence increase of more than 1.[19] From the shift of the Ni-L2 edge position and 
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the change of its peak shape, it is certain that the Ni in the interlayer is oxidized. La is also 

present in this domain. The La/O atomic ratio in the intermixing layer is 2/10, which is 70% 

of that of the La2Zr2O7 layer. This ratio is close to the experimental result (65% ± 5) of La/O 

as can be seen in figure 6. If the interlayer would be La2NiO4 the La/O atomic ratio in the 

intermixing layer would be 87.5% of the La2Zr2O7 layer, which is much higher than what we 

observed (65%). Also, more than 1.3 eV energy shift of Ni L2 edge is observed. This is more 

than the 0.2 eV shift from Ni to NiO reported by Potapov et al [34].  This suggests that 

probably the Ni is oxidized to a valence even higher than 2+. Both of these proofs lead to the 

suggestion that the interlayer is an intermixing of LaNiO3 and ZrO2. However, since this 

occurs in a reduced atmosphere, the probable phase is La Ni O , which is a reduced form of 

LaNiO

2 2 5

3 [35, 36]. Even though chemically deposited LZO thin films are porous materials, 

they act as efficient nickel ion diffusion barriers. An ultrathin oxide layer was formed at the 

nickel substrate interface.  

The Ni oxidation takes place due to the influence of temperature and the presence of 

oxygen during sample preparation, where nickel ions diffuse into the LZO layer; however a 

LZO buffer layer of 170 nm in thickness is sufficient to prevent further nickel ion diffusion 

into the YBCO superconducting layer, thus acting as an efficient diffusion barrier. The 

influence of depositing a YBCO superconducting layer on top of the LZO buffer layer is still 

a partially open question. Nickel oxide layers of 10-30 nm in thickness have been previously 

observed after YBCO deposition[20],[21] so that the oxide layer clearly increases in size during 

YBCO deposition, but the mechanism of further oxidation is still unclear. Usually before 

depositing the final YBCO superconducting layer, a thin CeO2 film is deposited on top of the 

LZO buffer layer to further protect the superconducting YBCO layer from oxygen diffusion 

[22], since this would affect the superconducting properties. In that case a BaCeO3 thin 

intermediate layer has been reported to be formed under the YBCO layer. [23] Cloet et al.[20] 
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reported the presence of nickel oxide and some NiWO4 areas at the interface by EDX in the 

TEM, however, measurements were done on a full YBCO coated conductor sample in which 

they attribute the presence of the nickel oxides solely to the growth of a YBCO layer on top. 

It fails to provide information on the nickel oxide layer thickness and diffusion barrier 

efficiency of the LZO film itself. Although pores are clearly visible in the TEM images 

provided, no information is provided on the nanoporosity, nor are nanovoids identified as 

such. Furthermore, EDX in conventional TEM does not have the same spatial resolution as 

EELS combined with HAADF-STEM has; in the latter sub nanometer and even atomic 

resolution is possible. [24] 

Nanovoids are typical features present in chemical solution derived LZO films; these 

were first detected with transmission electron microscopy by Molina et al.[4] A HRTEM 

investigation of La2Zr2O7thin films was reported confirming these results;[11] however no 

information on La2Zr2O7 buffer layer efficiency, nickel oxide layer formation or nanoporosity 

density was reported. The ultra-thin oxide layer can also be observed in the images reported 

in other contributions.[11,33] Zhao et al.[9] reported nanovoid densities in similar solution 

derived pyrochlore thin films measured from plan-view bright-field TEM images; however, 

quantification is difficult since information is taken from 2D images and therefore no reliable 

nanovoid densities could be reported. No information on intermediate layers was provided. 

(S)TEM is the most reliable way to detect the nanovoids since it probes the volume of the 

sample. Due to the advantages of Z-contrast imaging for differentiating between the material 

and vacuum, HAADF-STEM emerges as the ideal technique for imaging the nanovoids. 

Electron tomography in combination with HAADF-STEM allows for a true 3D 

characterization and since the volume of the sample is probed, the local nanovoid density can 

be determined with a high precision.   
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However, difficulties arise when performing electron tomography due to the influence 

of missing wedge artifacts and segmentation methods; this has been overcome by the use of 

an on-axis tomography holder and a novel electron tomography image reconstruction 

technique 'Discrete Algebraic Reconstruction Algorithm' DART.[13] To eliminate any missing 

wedge a micro-pillar specimen was prepared for electron tomography using a FEI Nova 

Nanolab 200 Dual Beam SEM/FIB system. A micro-pillar mounted on an on-axis rotation 

tomography holder allows image acquisition with a full tilt range and so minimizing 

artifacts.[25] Figure 8 (a) shows a Focused Ion Beam (FIB) prepared micro-pillar consisting of 

the Ni-W substrate, the LZO buffer layer and a Pt layer, intentionally deposited for protecting 

the LZO layer. A series of 2D HAADF-STEM images was recorded over a tilt range of 180° 

with 2° increments using a JEOL 3000 F (S)TEM operating at 300 kV. Figure 8 (b) shows a 

typical HAADF-STEM image of the LZO micro-pillar sample. The tilt series is acquired in 

high-angle annular dark-field STEM mode to avoid unwanted diffraction contrast. This yields 

information only from the nanovoids and the surrounding LZO material as a whole, however 

information about the internal structure of the LZO is lacking.  

The 3D volume is reconstructed using different algorithms: SIRT [26] and DART.[13], [14] 

Figures 8(c) shows a xy-orthoslice through the 3D reconstruction and figure 8(d) an xz-

orthoslice through the 3D reconstruction. A volume rendering of the LZO material combined 

with an isosurface of the voids is shown in figure 8(e). Results on chemically deposited 

La2Zr2O7 thin films showed that nanovoids occupy > 20% of the La2Zr2O7 sample volume 

investigated. Using manual segmentation the density determined was (22.6±2.0) %, by 

segmentation through thresholding a value of (23.8±2.0) % (both using SIRT) and by the 

more reliable DART algorithm, a density of 20.7±1.9% was determined. Details on the 

reconstruction technique and segmentation procedure applied to porous materials have been 

published in a recent contribution.[32] Determining the nanoporosity density is important for 
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LZO buffer layer quality control and for LZO thin film thickness estimations.[12] These values 

provide reliable LZO volume densities and are of importance in an industrial environment 

since not all buffer layer samples can be prepared for cross-sectional TEM. Thus, a quick and 

reliable film thickness estimation technique is important as an alternative to thickness 

measurements by TEM. Ellipsometry is such a technique for which real porosity density 

values could be used. 

Voids have also been reported in metal organic deposition (MOD) YBCO films.[27] 

Electron tomography could be implemented to study the three-dimensional distribution of 

artificial pinning centers in tailored YBCO coated conductors for magnet and energy 

applications. Reports found in the literature deal mostly with intrinsic pinning centers and 

quantification is based on conventional reconstructions techniques. In this case, the 

quantification of pinning relevant secondary phases is limited due to missing wedge artifacts 

and under sampling.[28-30]  

 

 

Conclusions 

The efficiency of an LZO buffer layer as a diffusion barrier has been investigated with 

electron energy-loss spectroscopy in a (scanning) transmission electron microscope. Despite 

the overlap of the Ni-L3 edge and La-M4 edge, the distribution of Ni, La and O with a high 

spatial resolution at the interface are successfully derived. A combination of nickel and 

lanthanum oxide, is found only in a 1.8 ± 0.2 nm thin interface layer, beyond which no 

significant further nickel diffusion could be determined. STEM-EELS results suggest that the 

interlayer is an intermixing of La Ni O2 2 5 and ZrO2. The presence of W, as low as 5% in the 

nickel substrate, cannot be measured here. The oxide layer formed is a product of this 

process, beyond this layer no further diffusion could be measured. LZO nanoporosity was 
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determined in a quantitative manner using electron tomography. The use of DART provided 

the best result for measuring the porosity in LZO films. This method can also be applied to 

other porous materials. In the case of the LZO film investigated, the nanoporosity density 

determined by this method was 20.7 ± 1.9% of the total sample volume.  
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Figures 

 

 

Figure 1. (a) HAADF-STEM image of a chemically deposited La2Zr2O7 buffer layer in plan-

view, seen from the <001> direction, a sponge-like structure is revealed. Rectangular shaped 

dark areas 5-20 nm in size are nanovoids, a preferential direction is observed and the edges of 

the rectangles are parallel to [100] and [010].  (b) Cross-sectional TEM bright-field image of 

a CSD deposited LZO thin film on a Ni-5at.%W substrate with a {100}<001> biaxial texture. 

The black arrow indicates the interface. Note the preferred nanovoid facet orientation of 45° 

with respect to the interface. Schematic drawings: (c) View from the <001> direction. The 

projection of the pyramids is observed in figure 1 (a). (d) The energetically preferred 

nanovoid structure has an octahedron shape in 3D. 
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Figure 2.  High resolution TEM image of the La2Zr2O7/Ni-5at.%W interface. The facets of a 

nanovoid can be seen. Note the 2 nm layer at the interface. 
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Figure 3. HAADF-STEM image of the La2Zr2O7/Ni-5at.%W sample in cross-section. The 

red box indicates the area used for the STEM-EELS measurement. Nanovoids are observed in 

the La2Zr2O7 layer.  

 

 

 

 

 

 

 

 20



 

Figure 4. STEM-EELS spectra across the La2Zr2O7/Ni-5at.%W interface. Spectra were 

obtained by averaging 10 spectra along the direction parallel to the interface. The material 

concentration changes from the nickel tungsten substrate to the nickel oxide layer at the 

interface, then to the La2Zr2O7 buffer layer. Note that La-M4 (849 eV) and Ni-L3 (855) 

ionization edges overlap. 
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Figure 5. STEM-EELS 2D maps (10 x 40) pixels across the La2Zr2O7/Ni-5at.%W interface 

(a) La-M5 elemental map (b) Ni-L2 elemental map (c) O-K elemental map and (d) the 

corresponding R(La-M5)G(Ni-L2)B(O-K) image. Pixel size along the y direction is 0.2 nm 

and along the x direction is 5 nm. 

 

 

 22



 

 

 

Figure 6. Integrated intensities for O-K, Ni-L2 and La-M5 ionization edges. The La-M5/O-K 

ratio is shown.  

 

 

 

 

 

 

 

 

 

 23



 

 

Figure 7. EELS Ni-L2 spectra across the interface from the Ni-5at.%W substrate to the oxide 

layer. A 1.3 eV shift is observed.  
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Figure 8. (a) Focused Ion Beam (FIB) prepared micro-pillar for on-axis rotation tomography 

(b) HAADF-STEM image of the LZO micro-pillar sample. (c) xy-orthoslice through the 3D 

reconstruction. (d) xz-orthoslice through the 3D reconstruction. (e) Volume rendering of the 

LZO material. Nanovoids are visualized. 
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